Foliations by Spacelike Hypersurfaces on Lorentz Manifolds
نویسندگان
چکیده
منابع مشابه
Foliations on hypersurfaces in holomorphic symplectic manifolds
Let Y be a hypersurface in a 2n-dimensional holomorphic symplectic manifold X. The restriction σ|Y of the holomorphic symplectic form induces a rank one foliation on Y . We investigate situations where this foliation has compact leaves; in such cases we obtain a space of leaves Y/F which has dimension 2n − 2 and admits a holomorphic symplectic form.
متن کاملSpacelike intersection curve of three spacelike hypersurfaces in E 41
In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E 1 .
متن کاملIsometry Groups and Geodesic Foliations of Lorentz Manifolds. Part Ii: Geometry of Analytic Lorentz Manifolds with Large Isometry Groups
This is part II of a series on noncompact isometry groups of Lorentz manifolds. We have introduced in part I, a compactification of these isometry groups, and called “bipolarized” those Lorentz manifolds having a “trivial ” compactification. Here we show a geometric rigidity of non-bipolarized Lorentz manifolds; that is, they are (at least locally) warped products of constant curvature Lorentz ...
متن کاملHyperbolic Structures on Closed Spacelike Manifolds
In this paper, we study the intrinsic mean curvature flow on certain closed spacelike manifolds, and prove the existence of hyperbolic structures on them.
متن کاملSpacelike hypersurfaces in de Sitter space
In this paper, we study the close spacelike hypersurfaces in de Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem for spacelike hypersurfaces without the constancy condition on the mean curvature or the scalar curvature. M.S.C. 2010: 53C40, 53B30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2020
ISSN: 1422-6383,1420-9012
DOI: 10.1007/s00025-020-1159-8